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FINAL REPORT ON GRANT DAAG-29-80-C-0040

{ The senior personnel supported on this grant were J. A. Yorke (P.I.)
and T. Y. Li. Papers [1] and [2] were written under this grant. In addition
S. Pelikan and I. Schwartz were graduate students who were supported in part
under this grant. The main results in Schwartz's thesis are described in [3].
; Hence, papers [1, 2, 3] have been accepted for publication and were supported
; by this grant.
The objective of the work done under this grant has been to explore

homotopy continuation methods. Chow, Mallet-Paret, and Yorke gave a general

L approach in [4] for using the homotopy method for solving for zeros of smooth

& maps. Their approach will generally give a solution for problems in which

the existence of a solution can be demonstrated by topological degree arguments.
The basic idea in their approach is simple and can be described briefly as

follows. Let £ : R" ~R" be a C1 map for which we want to find a zero. Assume

. - . n n s s
we are given a '"trivial" mapping g, ¢ R =+ R whose zeros are known a priori,

depending on parameter a. Define the homotopy
9,00x) = (1 - Mg (x) + M(x), 0<A<1. ey

They use the parametrized Sard Theorem to obtain a guarantee that for almost
every a, ¢;1(0) consists of one or more disjoint simple smooth curves in
A,x space., The curve containing (0,a) can sometimes be shown to lead from a

zero of g, at A =10 toazero of f at A = 1., Their idea is that one should

start with a large class of trivial maps g, Generally the parameter space

| should be at least n dimensional. Next choose a parameter value a at random
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(using a pseudo random number generator for example). Next homotop the

zeroes of g, to the zeroes of the nontrivial map. With probability one,

the curve Fa of zeroes of (1) starting from the zero of the trivial map will
% be a smooth path without bifurcation.

In [1] two main features of the curves Fa described above are studied

E |

; i in the case where ¢a(k,x) is real analytic with respect to both A and x.
! First if f(xo) = 0 and the curve Fa has (l,xo), as a limit point, we show
|

that there is a neighborhood N of (l,xo) in (A,x) space for which

o TR TR TR

NN oI N {0, s 0<A< 1)

is the union of finitely many curves, each of which has an analytic para-
metrization. That is, it consists of finitely many yi(t), 0<t < ti, with

yi(O) = (l,xo) and yi(t) = (1 - ¢t, xi(t)) where each xi(t) is given by a

convergent fractional power series in t that is a convergent power series in

1/N

t for some integer N. Secondly, let G = {a:0 is a regular value of ¢a};

notice that if a€G, then ¢;1(O) consists of smooth curves, We prove G

is open and densé in the space of all a. This property is of particular
importance in computer implementation.

A number of papers develop a class of continuation methods for solving
nonlinear systems of equations which have the feature that, under broad
topological assumptions which guarahtee the existence of solutions of the
system, the methods are guaranteed with probability one to generate a curve

which approaches arbitrarily close to a solution of the system. In these

papers, it is assumed that the nonlinear system is defined by smooth functions.

Piecewise linear techniques are similarly used.
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The purpose of this paper is to develop path following methods for a

class of problems including both piecewise linear and smooth systems of equations.
We formulate the method for "piecewise smooth functions" on a ''piecewise smooth
domain," and we give similar guaranteed convergence results,

As an illustration of the kinds of problems we want to be able to handle,
we let B be the ball in R" and let f:B + B be piecewisé smooth in the sense
defined in the next section. (In particular we assume f is continuous.)

Following the homotopy approach formally,we choose z€ B and write the homotopy

Fz(x,t) = (1-t)z + tf\(;)un:“i“"\~~~»-“-__‘_
where t€ [0,1]. The zeroes of Fz(l,x) are the fixed points of f while z

is the unique zero of FZ(O,x). When f is smooth (Cz), it is shown in [4]

that for almost every z€B a smooth path in B x {0,1] leads from (0,z) to at
least one zero at t = 1. The objective of this paper is to develop a corres-
ponding theory which permits £ to be piecewise smooth and to show there

is a piecewise smooth path of zeroes of Fz that leads to a fixed point

(or possibly to a larger set of fixed points) of f. The facts about the paths
for Fz follow from the general theory we develop here, and we develop only
enough theory for us to handle applications. We give applications in {2] to
show how the piecewise smooth formulation can be used, and these are discussed
in detail. First we consider the nonlinear complementarity problem. We put
it in our context and prove an existence result. The continuation method we

develop is a nonlinear form of Lemke's algorithm. Second we consider nonlinear

i .
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